
Irreducible representations of Dirac algebra for a constrained system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 6509

(http://iopscience.iop.org/0305-4470/36/23/315)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 02/06/2010 at 15:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 6509–6521 PII: S0305-4470(03)57836-2

Irreducible representations of Dirac algebra for a
constrained system

Y Ohnuki

Nagoya Women’s University, 1302 Takamiya Tempaku, Nagoya 468-8507, Japan

Received 3 January 2003, in final form 1 April 2003
Published 29 May 2003
Online at stacks.iop.org/JPhysA/36/6509

Abstract
All possible irreducible representations of the Dirac algebra for a particle
constrained to move on a D-dimensional manifold f (x) = 0 are explicitly
constructed in terms of canonical operators x̂α, π̂α (α = 1, 2, . . . ,D + 1) in
RD+1 by assuming that the manifold, which is embedded in RD+1, is
diffeomorphic to SD . It is shown that for D = 1 any irreducible representation
is uniquely specified by a real parameter α belonging to [0, 1), while for D � 2
the irreducible representation is unique. The explicit form of inner products in
x̂α-diagonal representation is given with the help of auxiliary wavefunctions on
RD+1, provided that they satisfy certain boundary conditions on the manifold.
Applying it we further examine the hermiticity property of the fundamental
operators of the Dirac algebra.

PACS numbers: 02.20.Qs, 02.40.−k, 04.20.Fy

1. Introduction

About 50 years ago Dirac [1] proposed a canonical formalism for constrained systems. On the
basis of his approach we will, in the present paper, make a study of some rigorous treatments
for a quantum-mechanical system constrained to move on a D-dimensional manifold, which
is embedded in the flat space RD+1 with coordinates xα (α = 1, 2, . . . ,D + 1). The classical
Hamiltonian in RD+1 is assumed to be

H = 1
2p2 + V (x) (1.1)

where p2 = pαpα and repeated Greek indices indicate the summation over 1, 2, . . . ,D + 1.
The D-dimensional smooth manifold on which the system is constrained will be denoted as

f (x) = 0 (1.2)

with a real function f (x). We require that the manifold be diffeomorphic to SD .
Equation (1.2) is the so-called primary constraint. According to the prescription by Dirac

the consistency of (1.2) under time development leads us to the secondary constraint

pαf,α(x) = 0 (1.3)
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where and in what follows f,α(x) ≡ ∂αf (x), f,αβ(x) ≡ ∂α∂βf (x). Then the Dirac brackets
(denoted as [ , ]∗) for canonical variables in classical mechanics are given by

[xα, xβ]∗ = 0 (1.4)

[xα, pβ ]∗ = �αβ(x) (1.5)

[pα, pβ ]∗ = −1

R2(x)
(f,α(x)f,βγ (x) − f,β(x)f,αγ (x))pγ (1.6)

where �αβ(x) stands for the projection

�αβ(x) = δαβ − f,α(x)f,β(x)

R2(x)
with R2(x) = f,α(x)f,α(x). (1.7)

Thus it is considered that a quantum-mechanical version of the above relations will be of the
form

f (x̂) = 0 (1.8)

{p̂α, f,α(x̂)} = 0 (1.9)

[x̂α, x̂β] = 0 (1.10)

[x̂α, p̂β] = ih̄�αβ(x̂) (1.11)

[p̂α, p̂β] = − ih̄

2

{
1

R2(x̂)
(f,α(x̂)f,βγ (x̂) − f,β(x̂)f,αγ (x̂)), p̂γ

}
(1.12)

where {Â, B̂} ≡ ÂB̂ + B̂Â and the symbol hat ˆ indicates an operator. Needless to say the
Hamiltonian in this case is Ĥ = 1

2 p̂2 + V (x̂). Since the manifold f (x) = 0 is diffeomorphic
to SD , it is obvious that

R2(x) �= 0 (1.13)

in the neighbourhood of f (x) = 0.
With direct calculation it is shown that the commutation relations (1.10)–(1.12) are

compatible with the constraints (1.8) and (1.9). We call the set of relations (1.8)–(1.12)
the Dirac algebra on f (x) = 0. Unlike the case of classical mechanics we are required
to determine irreducible representations of this algebra, because the structure of our theory
inevitably depends on the representation.

To this end, in section 2 a study is made of a connection between two irreducible
representations of Dirac algebras defined respectively on f (x) = 0 and g(x) = 0 which
are both diffeomorphic to SD .

Based on this argument, in section 3, all possible irreducible representations of the Dirac
algebra on f (x) = 0 are completely determined by identifying the manifold g(x) = 0 with
SD . Corresponding to each irreducible representation the explicit form of p̂α is shown to be
described in terms of canonical variables on RD+1.

In section 4 with the help of auxiliary L2-functions on RD+1 we try to rewrite inner
products of state vectors in a form convenient for practical use. With the aid of this the
Hermitian property of p̂α on the irreducible representation space is examined.

Section 5 is devoted to some additional remarks.

2. Two Dirac algebras

We will examine a relation between representations of two Dirac algebras defined respectively
on the manifolds f (x) = 0 and g(x) = 0, which are both diffeomorphic to SD . As in the
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case of f (x) = 0 we can write the Dirac algebra on g(x) = 0 assuming the Hamiltonian
Ĥ = 1

2 p̂2 + V (x̂). It takes the following form:

g(x̂) = 0 (2.1)

{g,α(x̂), p̂α} = 0 (2.2)

[x̂α, x̂β] = 0 (2.3)

[x̂α, p̂β ] = ih̄�′
αβ(x̂) (2.4)

[p̂α, p̂β ] = − ih̄

2

{
1

R′2(x̂)
(g,α(x̂)g,βγ (x̂) − g,β(x̂)g,αγ (x̂)), p̂γ

}
(2.5)

where

�′
αβ(x̂) = δαβ − g,α(x̂)g,β(x̂)

R′2(x̂)
and R′2(x̂) = g,α(x̂)g,α(x̂). (2.6)

Since the manifolds f (x) = 0 and g(x) = 0 are connected by diffeomorphism, we may write

g(x ′) = f (x) (2.7)

with

x ′
α = x ′

α(x) (or equivalently xα = xα(x
′)). (2.8)

With these preparations we introduce the transformation such that{
x̂ ′

α = x̂ ′
α(x̂)

p̂′
α = 1

2 {(�′(x̂ ′)[∂x̂/∂x̂ ′])αβ, p̂β } (2.9)

where �′(x̂ ′) and [∂x̂/∂x̂ ′] stand for (D + 1) × (D + 1)-matrices whose (α, β)-elements are
given by �′

αβ(x̂ ′) and ∂x̂β/∂x̂ ′
α, respectively. Similarly we define the (D+1)×(D+1)-matrices

�(x̂) and [∂x̂ ′/∂x̂] with (�(x̂))αβ = �αβ(x̂) and [∂x̂ ′/∂x̂]αβ = ∂x̂ ′
β/∂x̂α, respectively.

Equations (2.9) provide a variable transformation (x̂, p̂) → (x̂ ′, p̂′) on the representation
space of the Dirac algebra on f (x) = 0. Then there holds the following:

Theorem 1. Given x̂α and p̂α that satisfy the Dirac algebra on f (x) = 0 then the operators x̂ ′
α

and p̂′
α defined by (2.9) satisfy the Dirac algebra on g(x) = 0 for an arbitrary diffeomorphism

obeying (2.7).

Before going to a proof of this theorem we make the following remarks:

1. Let Â, B̂ and Ĉ be operators. If [[Ĉ, Â], B̂] = 0, then

{Â, {B̂, Ĉ}} = {{Â, B̂}, Ĉ}. (2.10)

Thus if further [Â, B̂] = 0, we have

1
2 {Â, {B̂, Ĉ}} = {ÂB̂, Ĉ}. (2.11)

The proof of this statement is not difficult and will be omitted here.
2. There holds true the identity

�(x̂)[∂x̂ ′/∂x̂]�′(x̂ ′) = �(x̂)[∂x̂ ′/∂x̂]. (2.12)
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Proof. Inserting �′
γβ(x̂ ′), which is defined by (2.6) with the replacement x̂ → x̂ ′, into

the left-hand side (lhs) of the above we find

(α, β)-element of lhs = (�(x̂)[∂x̂ ′/∂x̂])αβ − 1

R′2(x̂ ′)
�αρ(x̂)

∂x̂ ′
γ

∂x̂ρ

g,γ (x̂ ′)g,β(x̂ ′)

= (�(x̂)[∂x̂ ′/∂x̂])αβ − 1

R′2(x̂ ′)
�αρ(x̂)f,ρ(x̂)g,β(x̂ ′)

= (�(x̂)[∂x̂ ′/∂x̂])αβ

where use has been made of (2.7) together with �αρ(x̂)f,ρ(x̂) = 0. �

3. We can uniquely solve the second equation of (2.9) with respect to p̂α to obtain

p̂α = 1
2 {(�(x̂)[∂x̂ ′/∂x̂])αβ, p̂′

β}. (2.13)

Proof. Taking the symmetrized products of (�(x̂)[∂x̂ ′/∂x̂])γα/2 with both sides of the
second equation of (2.9) we obtain with the help of (2.11) and (2.12)
1
2 {(�(x̂)[∂x̂ ′/∂x̂])γα, p̂′

α} = 1
4 {(�(x̂)[∂x̂ ′/∂x̂])γα, {(�′(x̂ ′)[∂x̂/∂x̂ ′])αβ, p̂β }}

= 1
2 {(�(x̂)[∂x̂ ′/∂x̂]�′(x̂ ′)[∂x̂/∂x̂ ′])γβ, p̂β }

= 1
2 {(�(x̂)[∂x̂ ′/∂x̂][∂x̂/∂x̂ ′])γβ, p̂β}

= 1
2 {�γβ(x̂), p̂β }

where by virtue of (1.7), (2.11) and (1.9) the right-hand side reduces to

p̂γ − 1

2

{
f,γ (x̂)f,β (x̂)

R2(x̂)
, p̂β

}
= p̂γ − 1

4

{
f,γ (x̂)

R2(x̂)
, {f,β(x̂), p̂β}

}
= p̂γ . (2.14)

Thus we have proved (2.13). Uniqueness of the solution is evident from the process of
calculation. �

Proof of theorem 1. To this end we first examine constraint (2.2) starting with the Dirac
algebra on f (x) = 0. Taking the anti-symmetrized products of g,α(x̂ ′) with both sides of the
second equation of (2.9) we find

{g,α(x̂
′), p′

α} = 1
2 {g,α(x̂ ′), {(�′(x̂ ′)[∂x̂/∂x̂ ′])αβ , p̂β}}

= {g,α(x̂ ′)�′
αγ (x̂ ′)[∂x̂/∂x̂ ′]γβ, p̂β} = 0

where use has been made of (2.11) and the identity g,α(x̂ ′)�′
αγ (x̂ ′) = 0. Thus constraint (2.2)

has been derived.
Next, to derive (2.4) we make a commutator of x ′

α and p′
β . Then from (2.9) we obtain

[x̂ ′
α, p̂

′
β ] = 1

2
[x̂ ′

α, {(�′(x̂ ′)[∂x̂/∂x̂ ′])βγ , p̂γ }]
= (�′(x̂ ′)[∂x̂/∂x̂ ′])βγ [x̂ ′

α, p̂γ ]

= ih̄(�′(x̂ ′)[∂x̂/∂x̂ ′])βγ �γρ(x̂)[∂x̂ ′/∂x̂]ρα

= ih̄�′
αβ(x̂ ′) − ih̄

R2(x̂)
(�′(x̂ ′)[∂x̂/∂x̂ ′])βγ f,γ (x̂)f,ρ(x̂)[∂x̂ ′/∂x̂]ρα

= ih̄�′
αβ(x̂ ′) − ih̄

R2(x̂)
�′

βγ (x̂ ′)g,γ (x̂ ′)f,ρ(x̂)[∂x̂ ′/∂x]ρα

= ih̄�′
αβ(x̂ ′)

which proves (2.4).
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Finally we will derive (2.5). To avoid unnecessary complications we will proceed in the
following way: as seen from (1.11) and (1.12) the commutator [p̂′

α, p̂
′
β ] is linear in p̂γ , thereby

applying (2.13) we can write it as

[p̂′
α, p̂

′
β ] = ih̄

2

{
c[αβ]
γ (x̂ ′), p̂′

γ

}
(2.15)

with undetermined functions c[αβ]
γ (x̂ ′). Taking the commutators of x̂ ′

γ with both sides of (2.15)
we obtain from the left-hand side

[x̂ ′
γ , [p̂′

α, p̂′
β ]] = [[x̂ ′

γ , p̂′
α], p̂′

β] + [p̂′
α, [x̂ ′

γ , p̂′
β ]]

= −ih̄

[
g,γ (x̂ ′)g,α(x̂ ′)

R′2(x̂ ′)
, p̂′

β

]
+ ih̄

[
g,γ (x̂ ′)g,β (x̂ ′)

R′2(x̂ ′)
, p̂′

α

]

by virtue of (2.4), while from the right-hand side

ih̄

2

{
c[αβ]
ρ (x̂ ′), [x̂ ′

γ , p̂′
ρ ]

} = −h̄2�′
γρ(x̂

′)c[αβ]
ρ (x̂ ′)

= −h̄2c[αβ]
γ (x̂ ′) +

h̄2

R′2(x̂ ′)
g,γ (x̂ ′)g,ρ(x̂ ′)c[αβ]

ρ (x̂ ′).

Since the right-hand sides of the above two equations must be the same we find

h̄c[αβ]
γ (x̂ ′) = h̄

R′2(x̂ ′)
g,γ (x̂ ′)g,ρ(x̂ ′)c[αβ]

ρ (x̂ ′)

+ i

[
g,γ (x̂ ′)g,α(x̂ ′)

R′2(x̂ ′)
, p̂′

β

]
− i

[
g,γ (x̂ ′)g,β(x̂ ′)

R′2(x̂ ′)
, p̂′

α

]
.

Then inserting this relation into the right-hand side of (2.15) we find

[p̂′
α, p̂

′
β] = ih̄

2

{
1

R′2(x̂ ′)
c[αβ]
ρ (x̂ ′)g,ρ(x̂

′)g,γ (x̂ ′), p̂′
γ

}

− 1

2

({[
1

R′2(x̂ ′)
g,α(x̂ ′)g,γ (x̂ ′), p̂′

β

]
, p̂′

γ

}
− (α ↔ β)

)

where the first term of the right-hand side is found to vanish owing to (2.11) and (2.2). Hence
we can write it as

[p̂′
α, p̂

′
β ] = −1

2

({[
1

R′2(x̂ ′)
g,α(x̂ ′)g,γ (x̂ ′), p̂′

β

]
, p̂′

γ

}
− (α ↔ β)

)
. (2.16)

On the other hand, with the aid of (2.4) we have by direct calculation[
1

R′2(x̂ ′)
g,α(x̂ ′)g,γ (x̂ ′), p̂′

β

]
= ih̄�′

ρβ(x̂ ′)
∂

∂x̂ ′
ρ

(
1

R′2(x̂ ′)
g,α(x̂ ′)g,γ (x̂ ′)

)

= ih̄

R′2(x̂ ′)

(
g,αβ(x̂ ′)g,γ (x̂ ′) − g,α(x̂ ′)g,β(x̂ ′)g,ρ(x̂

′)g,γ (x̂ ′)
∂

∂x̂ ′
ρ

(
1

R′2(x̂ ′)

)

− g,α(x̂ ′)g,β(x̂ ′)g,ρ(x̂ ′)g,γρ(x̂ ′)
R′2(x̂ ′)

)
+

ih̄

R′2(x̂ ′)
g,α(x̂ ′)g,βγ (x̂ ′)

− ih̄

R′4(x̂ ′)
(2g,βρ(x̂

′)g,α(x̂ ′)g,ρ(x̂ ′) + g,αρ(x
′)g,ρ(x̂ ′)g,β (x̂ ′))g,γ (x̂ ′)
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which immediately leads to[
1

R′2(x̂ ′)
g,α(x̂ ′)g,γ (x̂ ′), p̂′

β

]
− (α ↔ β)

= ih̄

R′2(x̂ ′)
(g,α(x̂ ′)g,βγ (x̂ ′) − g,β(x̂ ′)g,αγ (x̂ ′))

− ih̄

R′4(x̂ ′)
(g,α(x̂ ′)g,βρ(x̂ ′)g,ρ(x̂ ′) − g,β(x̂ ′)g,αρ(x̂

′)g,ρ(x̂
′))g,γ (x̂ ′). (2.17)

Then taking the anti-commutators of p̂′
γ with both sides of this equation we find that the

contribution from the second term of the right-hand side becomes zero due to (2.11) and (2.2),
and finally obtain from (2.16)

[p̂′
α, p̂

′
β ] = − ih̄

2

{
1

R′2(x̂ ′)
(g,α(x̂ ′)g,βγ (x̂ ′) − g,β(x̂ ′)g,αγ (x̂ ′)), p̂′

γ

}
thereby proving (2.5).

Thus we have completed the proof of theorem 1. �

Since, as was mentioned already, transformation (2.9) is invertible, the two descriptions
based on the respective Dirac algebras on f (x) = 0 and on g(x) = 0 are seen to be equivalent.
Thus, if conversely starting with the canonical variables x̂α and p̂α that satisfy the Dirac
algebra on g(x) = 0 we then obtain those of the Dirac algebra on f (x) = 0. They can be
written as {

x̂ ′
α = x ′

α(x̂)

p̂′
α = 1

2 {(�(x̂ ′)[∂x̂/∂x̂ ′])αβ, p̂β } (2.18)

where the first line stands for the diffeomorphism from the manifold g(x) = 0 to f (x) = 0,
and hence it satisfies f (x ′) = g(x). Since (2.18) is uniquely given by (2.9) there holds a one-
to-one correspondence between representations of the two Dirac algebras. Thus if one of them
is irreducible then so is the other as well. Furthermore, it is also remarkable that the irreducible
representation space of (x̂α, p̂α) is the same as that of (x̂ ′

α, p̂
′
α), i.e., in our case the irreducible

representation space of Dirac algebra is kept unchanged under smooth deformations of
the manifold. Based on these facts we will obtain, in the next section, all possible irreducible
representations of the Dirac algebra on f (x) = 0.

3. Irreducible representations

To determine irreducible representations of Dirac algebra on f (x) = 0 we will use SD for the
manifold g(x) = 0 in (2.18), since the irreducible representations in the case of SD are known
completely [2].

Thus to begin with we briefly survey the irreducible representations of the Dirac algebra
on SD with radius r. Then the algebra is given by

g(x̂) ≡ x̂2 − r2 = 0 (3.1)

{x̂α, p̂α} = 0 (3.2)

[x̂α, x̂β] = 0 (3.3)

[x̂α, p̂β ] = ih̄λαβ(x̂) (3.4)

[p̂α, p̂β ] = −ih̄

{
1

x̂2
(δβγ x̂α − δαγ x̂β), p̂γ

}
(3.5)
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where

λαβ(x̂) = δαβ − x̂αx̂β

x̂2
. (3.6)

In this connection it was shown [2] that the operators p̂β in any irreducible representation are
written in terms of x̂α and π̂α, which obey the canonical commutation relations in (D + 1)

dimensions

[x̂α, x̂β] = [π̂α, π̂β] = 0
(3.7)

[x̂α, π̂β ] = ih̄δαβ.

They are represented as follows:

D = 1

p̂β = 1

2

{
x̂ρ

x̂2
, L̂ρβ

}
− αh̄

εβρ x̂ρ

x̂2
(0 � α < 1) (3.8)

where

L̂ρβ = −L̂βρ L̂12 = x̂1π̂2 − x̂2π̂1 and εβγ = −εγβ ε12 = 1.

Any irreducible representation in this case can be uniquely specified by the parameter α.

D � 2

p̂β = 1

2

{
x̂ρ

x̂2
, L̂ρβ

}
(β = 1, 2, 3, . . . ,D + 1) (3.9)

where

L̂ρβ = x̂ρπ̂β − x̂β π̂ρ.

In this case, for each D the irreducible representation is uniquely determined except for
unitary-equivalent representations.

Thus by inserting (3.8) or (3.9) into the right-hand side of the second equation of (2.18)
we are able to derive p̂′

β in the irreducible representation for the Dirac algebra on f (x ′) = 0.
To this end we first consider the case of D � 2 for simplicity. Then from (3.9) and (2.18)

we obtain

p̂′
β = 1

4

{
(�(x̂ ′)[∂x̂/∂x̂ ′])βγ ,

{
x̂ρ

x̂2
, L̂ργ

}}

= 1

4
{(�(x̂ ′)[∂x̂/∂x̂ ′])βγ , {λγρ(x̂), π̂ρ}}

= 1

2
{(�(x̂ ′)[∂x̂/∂x̂ ′]λ(x̂))βγ , π̂γ } (3.10)

where x ′
α = x ′

α(x) is a diffeomorphism satisfying f (x ′) = x2 − r2. Note here that as seen
from (2.12) there holds the identity

�(x̂ ′)[∂x̂/∂x̂ ′]λ(x̂) = �(x̂ ′)[∂x̂/∂x̂ ′].

Hence, p̂′
β of (3.10) can be written as

p̂′
β = 1

2 {(�(x̂ ′)[∂x̂/∂x̂ ′])βγ , π̂γ }
= 1

4 {�βρ(x̂
′), {[∂x̂/∂x̂ ′]ργ , π̂γ }}

= 1
2 {�βγ (x̂ ′), π̂ ′

γ } (3.11)

with

π̂ ′
α = 1

2 {[∂x̂/∂x̂ ′]αβ, π̂β}. (3.12)
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Figure 1. P = (x1, x2), P
′ = (x′

1, x
′
2), where x′

α = x′
α(x) (α = 1, 2).

Furthermore, it can be shown [3] that the operators π̂ ′
α are self-adjoint on the representation

space of (3.7) and obey the canonical commutation relations

[x̂ ′
α, x̂

′
β] = [π̂ ′

α, π̂
′
β] = 0

[x̂ ′
α, π̂

′
β ] = ih̄δαβ.

Thus removing all primes from (3.11) we obtain

p̂β = 1
2 {�βγ (x̂), π̂γ } for D � 2 (3.13)

which of course realize a unique irreducible representation of the Dirac algebra on f (x) = 0
together with x̂α for each D (�2).

Next let us consider the case of D = 1. Inserting (3.8) into the second equation of (2.18)
and applying the same procedure as above we find

p̂′
β = 1

4

{
(�(x̂ ′)[∂x̂/∂x̂ ′])βγ ,

{
x̂ρ

x̂2
, L̂ργ

}}
− αh̄

x̂2
(�(x̂′)[∂ x̂/∂ x̂′])βγ x̂ρεγρ

= 1

2
{�βγ (x̂ ′), π̂ ′

γ } − αh̄

x̂2
(�(x̂′)[∂ x̂/∂ x̂′])βγ x̂ρεγρ. (3.14)

The right-hand side contains the unknown matrix [∂x̂/∂x̂ ′] which depends on the choice of
diffeomorphism from SD to f (x) = 0. Since in our case the diffeomorphism is not unique,
we have to eliminate [∂x̂/∂x̂ ′] from the expression of p̂′

β to derive a definite form. For this
purpose we introduce an angle θ such that

θ = tan−1

(
x2

x1

)
. (3.15)

Then there holds

−xρεγρ

x2
= ∂θ

∂xγ

(3.16)

which leads us to

−αh̄

x̂2
(�(x̂′)[∂ x̂/∂ x̂′])βγ x̂ρεγρ = αh̄�βρ(x̂

′)

(̂
∂θ

∂x′
ρ

)
. (3.17)

Corresponding to the angle θ we further introduce θ ′ which denotes the angle between the
x1-axis on R2 and a normal to the closed curve f (x ′) = 0 at the point P ′ = (x ′

1, x
′
2) (see

figure 1). It is given by

θ ′ = tan−1

(
f,2(x

′)
f,1(x ′)

)
. (3.18)
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Though both θ and θ ′ are multivalued functions of x (and hence of x ′), the difference
ξ(x ′) = θ ′ − θ provides us with a single-valued function of x ′. In fact, from figure 1 it
is observed that as the angle θ is transformed as θ → θ + 2π the angle θ ′ transforms as
θ ′ → θ ′ + 2π , and vice versa. Hence in contrast to θ and θ ′ the quantity ξ(x ′) can have an
operator form ξ(x̂ ′). Thus applying the unitary operator

u(x̂ ′) ≡ exp[iαξ(x̂ ′)] (3.19)

we obtain from (3.14) and (3.16)

u†(x̂ ′)p̂′
βu(x̂ ′) = 1

2
{�βγ (x̂ ′), π̂ ′

γ } + iα�βγ (x̂ ′)[π̂ ′
γ , ξ(x̂ ′)] + αh̄�βγ (x̂ ′)

(̂
∂θ

∂x ′
γ

)

= 1

2
{�βγ (x̂ ′), π̂ ′

γ } + αh̄�βγ (x̂ ′)

(̂
∂θ ′

∂x ′
γ

)

= 1

2
{�βγ (x̂ ′), π̂ ′

γ } + αh̄�βγ (x̂ ′)
f,2γ (x̂ ′)f,1(x̂

′)−f,1γ (x̂ ′)f,2(x̂
′)

R2(x̂ ′)

= 1

2
{�βγ (x̂ ′), π̂ ′

γ } − αh̄
�βγ (x̂ ′)f,γρ(x̂ ′)f,σ (x̂ ′)ερσ

R2(x̂ ′)
. (3.20)

The right-hand side is unitary-equivalent to (3.14) which, given a parameter α ∈ [0, 1), is
known to provide an irreducible representation of the Dirac algebra on f (x̂ ′) = 0. Then
removing all primes in (3.20) we have the expression for p̂β in the irreducible representation
of the Dirac algebra for D = 1.

Thus summarizing the above, we now arrive at the following:

Theorem 2. The operators p̂β , which together with x̂α describe the irreducible representation
of the Dirac algebra on f (x) = 0, are uniquely given by

p̂β = 1

2
{�βγ (x̂), π̂γ } − αh̄

�βγ (x̂)f,γρ(x̂)f,σ (x̂)ερσ

R2(x̂)
for D = 1 (0 � α < 1)

(3.21)

and

p̂β = 1
2 {�βγ (x̂), π̂γ } for D � 2 (3.22)

where the operators x̂α and π̂α are assumed to obey the canonical commutation relations given
by (3.7).

All possible irreducible representations of the Dirac algebra on f (x) = 0 are exhausted
by (3.21) and (3.22) except for similarity-equivalent representations.

By direct calculation it is also seen that the operators p̂β thus obtained satisfy (1.9)–(1.12)
on the basis of canonical commutation relations (3.7) without the use of the primary constraint
(1.8). Accordingly to describe the irreducible representation it is sufficient for us to apply the
expression (3.21) for D = 1 or (3.22) for D � 2 in addition to the primary constraint. In other
words, equations (1.9)–(1.12) are no longer necessary, for they are already involved in (3.21)
(or (3.22)). Hence instead of them we can utilize the well-known relations (3.7).

The Hermitian property of p̂β on the irreducible representation space will be discussed in
the next section.
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4. Inner products and x̂-diagonal representation

Now given an irreducible representation we denote the corresponding representation space as
H and state vectors belonging to it as |ψ), |χ), . . . . We further write a point on f (x) = 0 as
x. Since the eigenstates |x) of the position operators on the manifold form an ortho-complete
system in H we may write the completeness condition as∫

�f

dDσ(x) |x)(x| = 1̂ (4.1)

where 1̂ is the unit operator on H. The infinitesimal volume element dDσ(x) of the manifold is
defined referring to the measure of the flat space RD+1, and �f denotes the whole domain of the
manifold. In the position diagonal representation we write the wavefunctions corresponding
to |ψ) and |χ) as ψ(x) ≡ (x|ψ) and χ(x) ≡ (x|χ), respectively.

On the other hand, we will denote the representation space of the canonical commutation
relations (3.7) as H, which is spanned by the eigenstates |x〉 of the operators x̂β . They of
course obey

x̂β |x〉 = xβ |x〉 〈x|x ′〉 = δD+1(x − x ′) (4.2)∫
dD+1x |x〉〈x| = 1̂ (4.3)

with 1̂ being the unit operator on H. Corresponding to ψ(x) and χ(x) we introduce auxiliary
‘wavefunctions’ ψ(x) ≡ 〈x|ψ〉 and χ(x) ≡ 〈x|χ〉 for |ψ〉, |χ〉 ∈ H. They are assumed to
satisfy the conditions

ψ(x) = ψ(x)|x=x χ(x) = χ(x)|x=x. (4.4)

Then we have

(ψ, χ) =
∫

�f

dDσ(x) ψ∗(x)χ(x) =
∫

dD+1x δ(f (x))R(x)ψ∗(x)χ(x) (4.5)

where use has been made of the relation f (x) = (x − x )αf,α(x) for small |x − x|.
In this connection we note that in the Dirac algebra on f (x) = 0 there exists an ambiguity

of multiplying f (x) by a non-vanishing factor to describe the same manifold. In fact it is
shown with some calculations that under the transformation f (x) → f (x)C(x) (C(x) �= 0)

the Dirac algebra (1.8)–(1.12) remains unchanged and hence so is the expression for p̂β in
theorem 2. Utilizing this we can always convert f (x) into a normalized form that is defined
to satisfy

R2(x) = f,α(x)f,α(x) = 1 ∀x on f (x) = 0 (4.6)

with which the inner product is reduced to

(ψ, χ) =
∫

dD+1x δ(f (x))ψ∗(x)χ(x). (4.7)

As will be seen soon, condition (4.6) plays a definite role in guaranteeing the Hermiticity of
p̂β stated in theorem 2.

Since |ψ) and |ψ〉 are related only through (4.4), the correspondence of the latter to the
former is not unique. In fact, H and H are thought to be the total and base spaces respectively
in the theory of fibre space. Each equation of (4.4) implies the projection of a point on a fibre
to the base space. Thus the correspondence may be written as

� · |ψ〉 = |ψ) (4.8)
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with the aid of projection �. Needless to say, it has nothing to do with the usual projection
operator on a Hilbert space because its domain and range are specified by different spaces
described by H and H respectively.

It is noted that an arbitrary operator O(x̂, p̂) on H can also be regarded as an operator on
H. Since owing to (4.4) it is commutable with �, we find

�·O(x̂, p̂)|ψ〉 = O(x̂, p̂)|ψ) (4.9)

and hence

(ψ |O(x̂, p̂)|χ) =
∫

�f

dDσ(x) (ψ|x)(x|O(x̂, p̂)|χ)

=
∫

dD+1x δ(f (x))〈ψ|x〉〈x|O(x̂, p̂)|χ〉 (4.10)

which enables us to write

(ψ|O(x̂, p̂)|χ) =
∫

dD+1x dD+1x ′ δ(f (x))〈x|O(x̂, p̂)|x ′〉ψ∗(x)χ(x ′). (4.11)

Thus any matrix element of O(x̂, p̂) on H is obtainable by calculating the quantity
〈x|O(x̂, p̂)|x ′〉 on H. This will provide us with a powerful tool, e.g., for rigorous formulation
of the path integral on f (x) = 0 [4].

Now let us examine the Hermiticity of p̂α on H. Since they are Hermitian on H, we
immediately obtain from (4.7)∫

dD+1x δ(f (x))ψ∗(x){p̂αχ(x)} =
∫

dD+1x {p̂αδ(f (x))ψ(x)}∗χ(x)

=
∫

dD+1x δ(f (x)){p̂αψ(x)}∗χ(x) (4.12)

which implies the Hermiticity of p̂α on the physical Hilbert space H;

(ψ |p̂α|χ)∗ = (χ |p̂α|ψ) (4.13)

where condition (4.6) has played a crucial role. In fact, if starting with the general case (4.5),
we observe that a necessary and sufficient condition for p̂β in theorem 2 to be Hermitian
is [p̂β, δ(f (x̂))R(x̂)] = 0, and hence we have δ(f (x))R(x̂) = cδ(f (x)) with c being an
arbitrary positive constant. In (4.6) we put c = 1 for simplicity.

Before closing this section we have to note that operators p̂β that satisfy the Dirac algebra
on f (x) = 0 were found inductively by Kashiwa [5] through an elaborate analysis of the
Faddeev–Senjanovic formula [6, 7] for path integrals. In our notation the expression obtained
by him may be written as

p̂K
α = �αβ(x̂)π̂β − i

2
∂β�αβ(x̂) − i

2
�αβ(x̂)∂γ �βγ (x̂) (4.14)

in units of h̄ = 1. Since the combination of the first and second terms in the right-hand side
is {�αβ(x̂), π̂β }/2, expression (4.14) is not Hermitian. Thus owing to theorem 2 there must
exist a similarity transformation eliminating the third term. To this end we apply the relation

−∂γ �βγ (x̂) = f,β(x̂)∂γ

(
f,γ (x̂)

R2(x̂)

)
+

f,βγ (x̂)f,γ (x̂)

R2(x̂)

= f,β(x̂)∂γ

(
f,γ (x̂)

R2(x̂)

)
+

1

2
∂β log R2(x̂) (4.15)

to the third term. Then we obtain

p̂K
α = 1

2
{�αβ(x̂), π̂β } +

i

4
�αβ(x̂)∂β log R2(x̂)

= 1

2
V (x̂){�αβ(x̂), π̂β}V −1(x̂) (4.16)
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with

V (x̂) = exp
[

1
4 log R2(x̂)

] =
√

R(x̂).

Equation (4.16) demonstrates a similarity equivalence of p̂K
α to (3.21) with α = 0 for D = 1

and to (3.22) for D � 2.

5. Concluding remarks

In the present paper we have determined all possible irreducible representations of the Dirac
algebra on f(x) = 0 by applying theorem 1. It has enabled us to establish a connection between
two Dirac algebras defined respectively on two manifolds, each of which is diffeomorphic
to SD . In so doing the diffeomorphism has been given by a kind of variable transformation
keeping state vectors unchanged. Thus at least in our case the irreducible representation space
of the algebra depends only on the topology of the manifold and not on its shape.

We have also derived the explicit form of p̂β in an arbitrary irreducible representation
of the Dirac algebra on f (x) = 0. The result is stated as theorem 2. Moreover, Hermiticity
of p̂β in (3.21) and (3.22) has been shown with the aid of f (x) that obeys the normalization
condition (4.6). Thus it may be emphasized that the use of normalized f (x) in our formalism
is inevitable from the physical point of view.

Related to this it is conjectured that p̂β are presumably self-adjoint on H and each of
them takes a continuous spectrum of range (−∞,∞). In the case for SD this was explicitly
shown [2] by solving the eigenvalue problem for p̂β . In general cases, however, the situation
seems not very simple. We have not yet succeeded in giving an answer to this problem. In
this respect it would be worthwhile to give a proof of the self-adjointness of the operator p̂β

mentioned in theorem 2.
One application of our result would be to derive a rigorous expression for the path integral

based on the irreducible representation of the Dirac algebra. A detailed study on the path
integral will be made in a forthcoming paper [4].

It is noted that a few years ago essentially the same results as in the present paper
were found by the author [8] with successive applications of infinitesimal deformation of the
manifold in obtaining f (x) = 0 from SD . They consist of two kinds of diffeomorphism, that
is, dilatation and area-preserving mapping [9], the latter of which is defined to preserve the
measure dDσ(x). However, the method employed therein was tedious and incomplete in some
respects. Hence in the present paper we have developed a simpler and well-defined approach
without recourse to infinitesimal deformations of the manifold. In spite of this, such a manifold
deformation technique would be important from a geometrical point of view, especially in
relation to the argument by Karasev and Maslov [10], though this is not an operator formalism.
Thus a further study of this problem would be highly desirable.

The formalism given in the present paper can easily be generalized to the case where the
manifold f (x) = 0 is diffeomorphic to RD . The Dirac algebra in this case takes the same
form as (1.8)–(1.12), and the irreducible p̂β are given by (3.21) and (3.22). For D = 1,
however, it is noted that θ ′(x) ≡ tan−1(f,2(x)/f,1(x)) is a single-valued function of x in the
neighbourhood of f (x) = 0 because of the simply connected structure of the manifold. Thus
by means of the unitary operator eiαθ ′(x̂) we can eliminate the parameter α from the right-hand
side of (3.21) to obtain

eiαθ ′(x̂)[rhs of (3.21)] e−iαθ ′(x̂) = 1
2 {�βγ (x̂), π̂γ }. (5.1)

Consequently, if f (x) = 0 is diffeomorphic to RD , the irreducible p̂β is uniquely given by

p̂β = 1
2 {�βγ (x̂), π̂γ } (5.2)

for any D.
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